Langsung ke konten utama

Sejarah Geometri Euclid

Sejarah Geometri Euclid

Geometri Euclidean
adalah sistem matematika yang dikaitkan dengan Alexandria matematikawan Yunani Euclid , yang dijelaskan dalam buku teks tentang geometri yaitu Elements . Metode Euclid terdiri dalam asumsi satu set kecil intuitif menarik aksioma , dan menyimpulkan lainnya proposisi ( dalil ) dari ini. Meskipun banyak dari hasil Euclid telah dinyatakan oleh matematikawan sebelumnya, Euclid adalah yang pertama untuk menunjukkan bagaimana proposisi-proposisi bisa masuk ke dalam deduktif dan komprehensif sistem logis . Unsur dimulai dengan pesawat geometri, masih diajarkan di sekolah menengah sebagai yang pertama sistem aksiomatik dan contoh pertama dari bukti formal . Berpindah ke geometri solid dari tiga dimensi . Banyak dari Elemen menyatakan hasil dari apa yang sekarang disebut aljabar dan nomor teori , ditulis dalam bahasa geometris.
Selama lebih dari dua ribu tahun, kata sifat "Euclid" tidak diperlukan karena tidak ada geometri lain yang disusun. Aksioma Euclid nampak seperti sangat jelas bahwa pembuktian teorema lainnya dianggap benar dalam arti, mutlak sering metafisik,. Namun, sekarang banyak lainnya konsisten diri non-Euclidean geometri diketahui, yang pertama yang telah ditemukan pada awal abad 19. Implikasi dari Einstein teori relativitas umum adalah bahwa ruang Euclidean adalah pendekatan yang baik terhadap sifat ruang fisik hanya di mana medan gravitasi tidak terlalu kuat. 


Unsur
Unsur terutama sebuah sistematisasi pengetahuan awal geometri. Keunggulannya di atas perawatan sebelumnya dengan cepat diakui, dengan hasil bahwa ada sedikit minat dalam melestarikan yang sebelumnya, dan mereka sekarang hampir semua hilang.
Buku I-IV dan VI membahas geometri bidang datar. Banyak hasil tentang tokoh-tokoh pesawat terbukti, misalnya, Jika segitiga memiliki dua sudut yang sama, maka sisi  yang bersesuaian dengan sudut tersebut adalah sama . Teorema Pythagoras terbukti.
Buku V dan VII-X berurusan dengan nomor teori, dengan nomor diperlakukan secara geometris melalui representasi mereka sebagai segmen garis dengan berbagai panjang. Pengertian seperti bilangan prima dan rasional dan bilangan irasional diperkenalkan. Yang tak terbatas bilangan prima terbukti.
Buku XI-XIII geometri perhatian padat. Hasil khas adalah rasio 01:03 antara volume kerucut dan silinder dengan ketinggian yang sama dan basis.
 
Persamaan postulat: Jika dua garis berpotongan sepertiga sedemikian rupa sehingga jumlah dari sudut-sudut bagian dalam di satu sisi kurang dari dua sudut yang tepat, maka mau tidak mau harus dua baris saling berpotongan pada sisi jika diperpanjang cukup jauh.

Komentar

Postingan populer dari blog ini

Bilangan Bulat

Pengertian Bilangan Bulat     Bilangan bulat adalah bilangan yang terdiri atas bilangan cacah (0,1,2,3,4,.....)dan bilangan negatif dari bilangan tersebut (...,-3,-2,-1,0),karena -0 sama dengan 0 maka cukup dituliskan satu  kali. Jika disajikan dalam garis bilangan : https://www.advernesia.com/blog/matematika/bilangan-bulat-positif-dan-negatif/ Operasi Hitung pada Bilangan Bulat     Operasi hitung yang ada pada bilangan bulat adalah operasi penjumlahan,pengurangan,perkalian dan pembagian Menaksir Hasil Perkalian dan Pembagian Bilangan Bulat     Menaksir adalah proses membulatkan bilangan bulat.Cara yang dilakukan untuk mencari hasil pembuatan atau taksiran adalah sebagai berikut :         1. Pembulatan ke Angka Puluhan Terdekat             a. Jika angka satunya kurang dari 5, angka tersebut tidak dihitung atau dihilangkan             b. Jika angka satuannya lebih dari atau sama dengan 5,angka tersebut dibulatkan ke atas menja

Bangun Datar Segitiga

Segitiga     Sebuah bangun datar yang dibatasi oleh tiga sisi yang setiap ujungnya saling berkaitan. https://hadhilchoirihendra.wordpress.com/2013/03/06/math-solusi-soal-diketahui-sisi-dicari-sudut/     Pada segitiga ABC diatas, terlihat bahwa segitiga tersebut memiliki tiga sisi, yaitu AB, BC, dan AC, dan tinggi t. Rumus untuk mencari keliling segitiga adalah : Keliling = AB+BC+CA sedangkan untuk mencari luas segitiga adalah : Luas = 1/2 x alas x tinggi Ciri-ciri segitiga : Segitiga memiliki, – 3 sisi yang membatasi – 3 titik sudut dengan jumlah semua sudutnya adalah 180^0 Sudut terbesar akan berhadapan dengan sisi terpanjang dan sisi terpendek berhadapan dengan sudut terkecil. Ada beberapa jenis segitiga, yaitu :     a. Dilihat dari sisinya: 1. Segitiga samasisi. http://fismath.com/sifat-sifat-segitiga-sama-sisi/ Segitiga samasisi adalah segitiga yang memiliki ketiga sisi sama panjang, dan semua sudutnya 60 derajat 2. Segitiga samakaki. https

Garis

Garis      Garis adalah kumpulan titik-titik yang tersusun sehingga memiliki pangkal dan ujung. Garis juga diartikan sebagai gambaran geometri mengenai sebuah titik yang bergerak. Kedudukan dua garis. 1. Garis Sejajar     posisi dua garis akan dikatakan sejajar apabila kedua garis tersebut berada di satu bidang dan apabila kedua garis tersebut di perpenjang tidak akan bisa saling berpotongan. https://brainly.co.id/tugas/4977233 2. Garis Berpotongan     dua buah garis dikatakan berpotongan apabila keduanya memiliki sebuah titik potong atau biasa disebut sebagai titik persekutuan. https://ayobelajarpemasaran.blogspot.com/2017/06/contoh-soal-garis-berpotongan.html 3. Garis berhimpit      dua buah garis akan dikatakan berhimpit apabila kedua garis tersebut memiliki setidaknya dua titik potong. sebagai contoh jarum jam ketika menunjukkan pukul 12 pas. kedua jarum jam tersebut akan saling berhimpit. https://idschool.net/smp/hubungan-antar-dua-garis-dan-sudut-yang