Langsung ke konten utama

Aksioma Geometri Euclid

Aksioma 
 
Geometri Euclidean adalah sistem aksiomatik , di mana semua teorema ("pernyataan benar") berasal dari sejumlah kecil aksioma. Menjelang awal buku pertama dari Elemen, Euclid memberikan lima postulat (aksioma) untuk pesawat geometri , menyatakan dalam hal konstruksi (sebagaimana diterjemahkan oleh Thomas Heath):
"Mari berikut akan mendalilkan"
:
1.     "Untuk menggambar garis lurus dari setiap titik ke titik apapun. "
2. "Untuk menghasilkan [memperluas] sebuah garis lurus yang terbatas terus menerus dalam garis lurus. "
3.     "Untuk menggambarkan lingkaran dengan pusat dan jarak [radius]. "
4.     "Itu semua sudut yang tepat sama dengan satu sama lain."
5.     Para paralel dalil : "Itu, jika garis lurus jatuh di dua jalur lurus membuat sudut interior pada sisi yang sama kurang dari dua sudut yang tepat, dua garis lurus, jika diproduksi tanpa batas waktu, bertemu di sisi itu yang adalah sudut kurang dari dua sudut yang tepat. " 
Meskipun pernyataan Euclid dari postulat hanya secara eksplisit menegaskan keberadaan konstruksi, mereka juga diambil untuk menjadi unik.
Elements juga memasukkan lima "notasi biasa": 
1.     Hal-hal yang sama dengan hal yang sama juga sama satu dengan lainnya.
2.     Jika sesuatu yang sama ditambahkan ke sama, maka keutuhan adalah sama.
3.     Jika sesuatu yang sama dikurangkan dari sama, maka sisanya adalah sama.
4.     Hal-hal yang bertepatan dengan satu sama lain sama satu sama lain.
5.     Keseluruhan lebih besar daripada bagian.

Komentar

Postingan populer dari blog ini

Bilangan Bulat

Pengertian Bilangan Bulat     Bilangan bulat adalah bilangan yang terdiri atas bilangan cacah (0,1,2,3,4,.....)dan bilangan negatif dari bilangan tersebut (...,-3,-2,-1,0),karena -0 sama dengan 0 maka cukup dituliskan satu  kali. Jika disajikan dalam garis bilangan : https://www.advernesia.com/blog/matematika/bilangan-bulat-positif-dan-negatif/ Operasi Hitung pada Bilangan Bulat     Operasi hitung yang ada pada bilangan bulat adalah operasi penjumlahan,pengurangan,perkalian dan pembagian Menaksir Hasil Perkalian dan Pembagian Bilangan Bulat     Menaksir adalah proses membulatkan bilangan bulat.Cara yang dilakukan untuk mencari hasil pembuatan atau taksiran adalah sebagai berikut :         1. Pembulatan ke Angka Puluhan Terdekat             a. Jika angka satunya kurang dari 5, angka tersebut tidak dihitung atau dihilangkan             b. Jika angka satuannya lebih dari atau sama dengan 5,angka tersebut dibulatkan ke atas menja

Bangun Datar Segitiga

Segitiga     Sebuah bangun datar yang dibatasi oleh tiga sisi yang setiap ujungnya saling berkaitan. https://hadhilchoirihendra.wordpress.com/2013/03/06/math-solusi-soal-diketahui-sisi-dicari-sudut/     Pada segitiga ABC diatas, terlihat bahwa segitiga tersebut memiliki tiga sisi, yaitu AB, BC, dan AC, dan tinggi t. Rumus untuk mencari keliling segitiga adalah : Keliling = AB+BC+CA sedangkan untuk mencari luas segitiga adalah : Luas = 1/2 x alas x tinggi Ciri-ciri segitiga : Segitiga memiliki, – 3 sisi yang membatasi – 3 titik sudut dengan jumlah semua sudutnya adalah 180^0 Sudut terbesar akan berhadapan dengan sisi terpanjang dan sisi terpendek berhadapan dengan sudut terkecil. Ada beberapa jenis segitiga, yaitu :     a. Dilihat dari sisinya: 1. Segitiga samasisi. http://fismath.com/sifat-sifat-segitiga-sama-sisi/ Segitiga samasisi adalah segitiga yang memiliki ketiga sisi sama panjang, dan semua sudutnya 60 derajat 2. Segitiga samakaki. https

Garis

Garis      Garis adalah kumpulan titik-titik yang tersusun sehingga memiliki pangkal dan ujung. Garis juga diartikan sebagai gambaran geometri mengenai sebuah titik yang bergerak. Kedudukan dua garis. 1. Garis Sejajar     posisi dua garis akan dikatakan sejajar apabila kedua garis tersebut berada di satu bidang dan apabila kedua garis tersebut di perpenjang tidak akan bisa saling berpotongan. https://brainly.co.id/tugas/4977233 2. Garis Berpotongan     dua buah garis dikatakan berpotongan apabila keduanya memiliki sebuah titik potong atau biasa disebut sebagai titik persekutuan. https://ayobelajarpemasaran.blogspot.com/2017/06/contoh-soal-garis-berpotongan.html 3. Garis berhimpit      dua buah garis akan dikatakan berhimpit apabila kedua garis tersebut memiliki setidaknya dua titik potong. sebagai contoh jarum jam ketika menunjukkan pukul 12 pas. kedua jarum jam tersebut akan saling berhimpit. https://idschool.net/smp/hubungan-antar-dua-garis-dan-sudut-yang