Aksioma Geometri Euclidean adalah sistem aksiomatik , di mana semua teorema ("pernyataan benar") berasal dari sejumlah kecil aksioma. Menjelang awal buku pertama dari Elemen, Euclid memberikan lima postulat (aksioma) untuk pesawat geometri , menyatakan dalam hal konstruksi (sebagaimana diterjemahkan oleh Thomas Heath): "Mari berikut akan mendalilkan" : 1. "Untuk menggambar garis lurus dari setiap titik ke titik apapun. " 2. "Untuk menghasilkan [memperluas] sebuah garis lurus yang terbatas terus menerus dalam garis lurus. " 3. "Untuk menggambarkan lingkaran dengan pusat dan jarak [radius]. " 4. "Itu semua sudut yang tepat sama dengan satu sama lain." 5. Para paralel dalil : "Itu, jika garis lurus jatuh di dua jalur lurus membuat sudut interior pada sisi yang sama kurang dari dua sudut yang tepat, dua
Sejarah Geometri Euclid Geometri Euclidean adalah sistem matematika yang dikaitkan dengan Alexandria matematikawan Yunani Euclid , yang dijelaskan dalam buku teks tentang geometri yaitu Elements . Metode Euclid terdiri dalam asumsi satu set kecil intuitif menarik aksioma , dan menyimpulkan lainnya proposisi ( dalil ) dari ini. Meskipun banyak dari hasil Euclid telah dinyatakan oleh matematikawan sebelumnya, Euclid adalah yang pertama untuk menunjukkan bagaimana proposisi-proposisi bisa masuk ke dalam deduktif dan komprehensif sistem logis . Unsur dimulai dengan pesawat geometri, masih diajarkan di sekolah menengah sebagai yang pertama sistem aksiomatik dan contoh pertama dari bukti formal . Berpindah ke geometri solid dari tiga dimensi . Banyak dari Elemen menyatakan hasil dari apa yang sekarang disebut aljabar dan nomor teori , ditulis dalam bahasa geometris. Selama lebih dari dua ribu tahun, kata sifat "Euclid" tidak diperl